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Abstract
Many universities engage in academic entrepreneurship, often with funding from exter-
nal sources. Benchmarking technology transfer performance with external research fund-
ing can help universities identify and learn from peers that may possess strategic advan-
tages in productivity. It also can be key for organizational learning and for communicating 
organizational performance to policy stakeholders and industry partners. In this study, we 
construct a unique dataset by linking two important data sources, AUTM and UMETRICS, 
and use stochastic frontier analysis to benchmark university licensing and revenue perfor-
mance with different federal funding streams. Our empirical results suggest that universi-
ties looking to promote commercialization performance might look to National Science 
Foundation funding, and the universities best at production (i.e., licensing technologies and 
generating patents) with external funding are not necessarily the best at capturing benefits 
from generating revenue from entrepreneurial activity and launching start-ups. Our study 
points to the importance of the differential advantages of sources of federal research fund-
ing and offers implications for policy makers and university administrators.

Keywords Performance · Federal funding · National science foundation · Benchmarking · 
Stochastic frontier analysis

JEL Codes D24 · I23 · O32 · O38

 * Jason Coupet 
 jacoupet@ncsu.edu

 Yuhao Ba 
 yba@ncsu.edu

1 School of Public and International Affairs, North Carolina State University, 2221 Hillsborough 
Street, 229 Caldwell Hall, Raleigh, NC 27604, USA

2 School of Public and International Affairs, North Carolina State University, 2221 Hillsborough 
Street, 217 Caldwell Hall, Raleigh, NC 27604, USA

http://orcid.org/0000-0002-7006-3598
http://orcid.org/0000-0002-4148-2494
http://crossmark.crossref.org/dialog/?doi=10.1007/s10961-021-09856-3&domain=pdf


606 J. Coupet, Y. Ba 

1 3

1 Introduction

Federal research funding through institutes such as the National Science Foundation (NSF), 
National Institutes of Health (NIH), and the US Department of Agriculture (USDA), as well 
as funding from industry, are a critical part of the US federal science policy and technology 
infrastructure. Universities leverage these external funding sources to produce, co-produce, 
and directly bring to market critical innovations. This is known as a third role of universi-
ties (Ankrah et al., 2013; Barbieri et al., 2018; de Wit-de Vries et al., 2019; Grimaldi et al., 
2011; Hayter et al., 2020; O’Shea et al., 2005; and Swamidass & Vulasa, 2009).

The degree to which universities successfully leverage external funding in entrepreneur-
ial efforts is not homogenous (Coccia & Bozeman, 2016; O’Shea et al., 2005; Kim, 2013), 
so benchmarking can be critical. Variation in performance can be attributed to a series of 
factors including use of intermediaries, experience, knowledge differences, resources and 
capabilities, bureaucracy and organizational design, and informational and cultural barriers 
(De Wit-de Vries et al., 2019; Siegel et al., 2004). Despite the variation, universities can 
pursue certain strategic advantages that enhance their entrepreneurial ability, and adopting 
best practices can be critical to improving their productivity and success in entrepreneurial 
efforts (Siegel et  al., 2003). Benchmarking, the process by which organizations scientifi-
cally use peer comparisons to facilitate organizational learning and innovation, can thus 
be critical to adopting best practices that lead to organizational growth and performance 
improvement (Ammons, 1999; Ammons & Roenigk, 2015). Benchmarking university per-
formance with external research funding is also important for organizational learning and 
for evaluation by policy makers and technology transfer offices (TTOs).

In this study, we examine if and to what extent federal funding of different sources 
impacts university technology transfer performance. Our aim is to lend further insights 
into benchmarking university performance in entrepreneurial efforts (Belitski et  al., 
2019). A common barrier to this line of research is the lack of nuanced data on exter-
nal investment/research funding. To address this, we first construct a unique dataset by 
linking two important data sources: UMTERICS, a unique dataset of federal awards 
provided by a member consortium of universities anchored by an IRB-approved data 
repository hosted at the University of Michigan’s Institute for Research on Innovation 
and Science (IRIS), and AUTM (formally known as the Association of University Tech-
nology Managers) data on technology transfer.

We then benchmark university entrepreneurial productivity achieved with external 
funding. Specifically, we disaggregate external funding into different resource streams 
and use stochastic frontier analysis (SFA) to benchmark university licensing, disclo-
sure, and revenue performance. Our result suggests that while universities use external 
research funding to pursue several different technology transfer outcomes, performance 
in one dimension may not imply performance in others. Our study offers implications 
for both policy makers and university administrators.

2  Theoretical framework

The continuous prominence of the research enterprise at US universities has been 
complicated by the rising costs associated with research production as well as an 
increasingly constrained funding environment (Abramo et  al., 2009; Coccia, 2008). 
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Benchmarking the productivity of research funding across institutions and projects and 
their relative performance has thus become a vital area of inquiry for both academics 
and practitioners (see Auranen & Nieminen, 2010; Chapple et al., 2005; Grimaldi et al., 
2011; Hayter et al., 2020; O’Shea et al., 2005; and (Swamidass & Vulasa, 2009).

Historically, many argue that the Bayh-Dole Act (P.L. 96-517, Patent and Trademark 
Act Amendments of 1980) transformed the degree to which universities engage in research 
commercialization strategies, in part by uniformly allowing nonprofit organizations to 
retain property rights to intellectual advances (Grimaldi et  al., 2011; Link et  al., 2011). 
Key provisions involve property rights from externally funded projects with commercial 
potential such as research funded by the NIH and NSF to be part of entrepreneurial efforts 
by nonprofits, which include universities. Even before Bayh-Dole, extramural public fund-
ing played a key role as a major research input in research-oriented universities (Mowery & 
Rosenberg, 1999). For instance, NSF funding has played a tremendous role in the develop-
ment of scientific knowledge and commercialized research (Chen et al., 2013).

As an important input into the research production process, external funding has been 
heavily prioritized in tenure and promotion policies (Owen-Smith & Powell, 2001), loca-
tion of local investments and partnerships (Friedman & Silberman, 2003), development 
of partnerships between universities (Owen-Smith & Powell, 2001), and overall strategic 
orientation of research-intensive universities (Gardner & Veliz, 2014). It also has positive 
effects on licensing and patent activity, which is as important for university technology per-
formance as it is for certain industries (Cohen et al., 2002; Coupe, 2003).

While all US research-intensive universities innovate with external funding, significant 
heterogeneity in performance can exist (Coccia & Bozeman, 2016; O’Shea et  al., 2005; 
Kim, 2013). Simply put, universities can have strategic advantages that better position 
them to improve technology transfer performance (Chapple et al., 2005; Arora et al., 2019), 
such as proximity to industry (Lindelöf & Löfsten, 2004), social ties to investors (Wright 
et  al., 2004), and relationships with industries (Bellini et  al., 2019). Also, heterogeneity 
in practices can be substantial and include TTO size (Chapple et al., 2005), IP evaluation 
processes (Sorensen and Chambers, 2008), use of intermediaries (De Wit-de Vries et al., 
2019), standard licensing agreement terms (Siegel et al., 2004), and royalty share to inven-
tors (Jefferson et al., 2017).

Universities can benefit from technology transfer best practice knowledge (Qureshi & 
Mian, 2020). Given the heterogeneity of university practices in technology transfer and 
research entrepreneurship (Powell et al., 2007), benchmarking can be a critical tool for uni-
versities looking to improve technology transfer practices. The most useful benchmarking 
practices involve “rigorous procedures for identifying best-in-class performers, analyzing 
processes, and isolating elements that contribute to excellent results” (Ammons & Roenigk, 
2015, p. 314). For universities engaged in technology transfer, effective benchmarking prac-
tices entail “enabling the participating organizations to understand how well they are doing 
relative to peer or similar organizations” (Tornatzky, 2001, p. 270). In practice, technology 
transfer benchmarking procedures often involve analyzing administrative data to identify 
historical lead performers from which peer organizations can learn. Given the varied nature 
of administrative data, benchmarking strategies of technology transfer performance can be 
diverse and include qualitative (Stone, 2003), descriptive (Heher, 2006), non-parametric 
(Lafuente & Berbegal-Mirabent, 2019), and parametric techniques (Chapple et al., 2005). 
However, in the context of university technology transfer performance, few benchmarking 
approaches emphasize the external resources that most universities use as crucial inputs in 
the research production process or focus on the disaggregated and different vectors of public 
funding that universities depend on (Schmiemann & Durvy, 2003).
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It is crucial that external funding sources be disaggregated as inputs in benchmarking 
approaches since universities normally rely on multiple funding sources in research produc-
tion. These inputs can include resources from different agencies such as the NSF (Bozeman 
& Boardman, 2004), the NIH (Blume-Kohout et al., 2015), and the USDA (Perko & Narin, 
1997; Spielman & von Grebmer, 2006). While previous research has investigated the pro-
ductivity of overall research expenditures (Heisey & Adelman, 2011), data limitations have 
typically been a barrier to benchmarking university performance with the different input 
streams that universities draw from industry, the federal government, and other sources.

Further, universities pursue multiple goals with external funding including social goals, 
such as developing ideas and research outputs for economic development and the advance-
ment of science (Bozeman et  al., 2015), and intrinsic goals, such as generating revenue 
from licensing technologies in which their research played a role (Ankrah et  al., 2013; 
Heisey & Adelman, 2011). According to the literature, organizations with strategic advan-
tages and/or capabilities in the pursuit of one goal may not necessarily be strategic lead-
ers in other domains (Reficco & Gutiérrez, 2016). In the context of technology transfer 
enterprises, based on a series of interviews, Siegel et al. (2003) lay out a series of specific 
goals, among which the most important ones are licenses, revenue from licenses, and pat-
ent generation.

The goal of benchmarking is to learn from best practices in producing research with 
external funding. The literature on university best practices in pursuit of licensing and pat-
ent activities is well developed. In general, universities should have robust incentives and 
support for innovative faculty, well-designed compensation and management systems for 
TTO staff, and strategies to mitigate differences in institutional logics between universities, 
communities, and industry partners to facilitate knowledge transfer (Siegel et  al., 2003). 
Universities should also protect and communicate the benefits of patent protections to fac-
ulty (Owen-Smith & Powell, 2001). One of the most robust takeaways from the literature is 
that universities should develop efficient and effective partnerships with industry partners, 
as such partnerships can be critical to facilitating licensing and patent activities through 
developing robust knowledge transfer capabilities (Ramos-Vielba & Fernández-Esquinas, 
2012). For researchers, university-industry collaboration can be beneficial as well, since it 
entails the potential of more research funding and a productive division of tasks between 
researchers and their industry counterparts (Bikard et  al., 2019). Additionally, industry 
experience can benefit the productivity of junior and female researchers (Lin & Bozeman, 
2006).

The strategies and practices universities used to generate revenue from commercializa-
tion can be different from those used to develop licensing and patent activities. Generating 
revenue from technology can be difficult for universities, and marketing university spon-
sored technologies and products can be cumbersome (Lundquist, 1996). The strategic ori-
entation of TTOs can sometimes center around licensing or patenting ideas as opposed to 
generating revenue, so strategic orientation toward disclosing and/or patenting inventions 
can conflict with strategies to generate revenue (Swamidass & Vulasa, 2009). The high cost 
of patenting, for instance, means universities might seek out industry partners to pay for 
patent applications. Researchers might publish their findings in the meantime, or universi-
ties might trade off potential royalties to alleviate patent fees (Klein et al., 2010).

In recent years, many universities have aggressively pursued a fourth commercializa-
tion output: start-ups (Swamidass, 2013). The strategies that universities use to develop 
and support start-ups can be different from the more traditional commercialization strate-
gies. Universities with strong start-up capabilities are best at educating entrepreneurs and 
supporting new ventures led by academics by offering an array of support in the areas of 
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business education, including strategic, technical, and leadership support for researchers 
who have spent careers as academic knowledge generators (Eesley & Miller, 2017). In 
short, instead of facilitating knowledge transfer from universities to industry partners, start-
up support involves transferring business knowledge to the researchers themselves.

In this case, there remains meaningful variance across three domains: producing pat-
ents, generating revenue from technologies, and launching startups. First, each of these 
domains requires a different set of strategic capabilities. The best performers in one domain 
(e.g., patent generation) may be different from the best performance in other domains such 
as start-up support or revenue generation. A university with an efficient TTO and a robust 
network of industry partners might be adept at turning external research funding into pat-
ents but might be less adept at generating revenue from technologies and capturing value 
from their partnerships. Accordingly, while there are general best practices universities can 
adopt, there is much to learn by benchmarking university performance with external fund-
ing across patenting, revenue generating, and startup domains.

Second, even though universities can learn about capabilities that matter from the tech-
nology transfer literature, there is still useful variance in how best performance might 
contribute to strategic positions and capabilities. For instance, differences in approaches 
in TTO operations, university strategic planning, and competitive advantage, geographic 
location, and incentive structure are apparent in the literature, even if they are more about 
the pursuit of generally similar best practices (Reficco & Gutiérrez, 2016).

Prior literature suggests that while universities use external research funding to pursue 
several different technology transfer outcomes, performance in one dimension may not 
imply performance in others.

3  Study design

3.1  Sample and data

We first combine two data sources, matching institutional entrepreneurship data from 
AUTM’s Statistics Access for Technology Transfer (STATT) database with aggregated 
individual award data from the UMETRICS database, an emerging database funded in part 
by the Sloan Foundation and managed by the IRIS Institute at the University of Michi-
gan (IRIS 2019). Using the aggregated award amounts, we then benchmark entrepreneurial 
performance with SFA, a parametric econometric approach in which productivity is mod-
eled from the residuals of an estimated production function. Last, we compare and analyze 
the scores across all four models.

The use of AUTM databases is robust in the technology transfer performance literature, 
but it can be difficult to disaggregate funding sources in conventional data sources. Recent 
advances in linking administrative records and survey datasets have provided some promising 
implications (Chang et al., 2019). The current analysis thus connects the UMETRICS data to 
the AUTM STATT database to examine university entrepreneurial productivity achieved with 
external funding. The three external funding sources covered are the NIH, the NSF, and the 
USDA. The combined data help to understand the catalytic mechanisms of external funding 
on research productivity and commercialization.

The UMETRICS data are a micro-level longitudinal dataset covering transaction- and 
expenditure-related information of sponsored projects by federal grants of IRIS university 
member institutions (IRIS 2019; Lane et al. 2015). In its 2019 release, 31 member institutions 
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were documented with 392,125 awards (55% from federal agencies) in the amount of $ 83.5 
billion (direct total expenditure) (IRIS 2019). The STATT database compiles the annual 
AUTM licensing activity surveys with information available across nine different topics perti-
nent to technology transfer and commercialization of its member organizations: licensing and 
other full-time equivalents (FTEs), research expenditures, license agreements, research fund-
ing related to licenses, license revenue, legal fees expenditures and reimbursements, IP-related 
activity, start-ups, and licensed technologies (Kim 2013, 186).

Prior to linking the two datasets, 30 institutions with 254 observations were identified from 
the 2019 UMETRICS core award file covering award information from the years 1900, 1979, 
and 1999 to 2018. The uneven coverage across institutions is due to the varied membership 
lengths. For example, only 2 institutions were covered in 2001, but 21 were covered in 2018. 
In the STATT data, 21 institutions with 510 observations were identified with technology 
transfer data from the years 1991 to 2016. The uneven coverage can likewise be attributed 
to the varying number of organizations surveyed each year. The merging of the two datasets 
resulted in a sample of 12 institutions with 91 observations. Of the 6 institutions excluded in 
the merging, 5 were technology transfer associations affiliated with existing IRIS member uni-
versities, and one was missed due to the year mismatch between the two datasets. Table 1 lists 
our sample’s descriptive statistics.

We also take two steps to alleviate confidentiality concerns associated with the UMET-
RICS data use agreement. First, we modify the identifiers of universities used to match across 
the STATT and UMETRICS data. Second, we transform the USDA award count into a binary 
variable indicating if the count exceeded ten (Table 2).

We acknowledge that our sample is not necessarily a representative one. Both the STATT 
and UMETRICS databases are membership based: organizations select into data provision 
in both cases. University TTO members are likely somewhat different than their counterfac-
tual, non-member peers. For example, in our sample the average industry research expendi-
ture amount is approximately $46 million annually. The average amount of industry research 
expenditures of AUTM in the STATT database members is approximately $19 million 
(Table 3).

Average outputs are higher as well, as the universities in our sample have higher patent, 
licensing, start-up, and revenue output. As one might suspect, the universities in our sample 
are more active overall than the average AUTM enterprise. Still, this design is mostly con-
cerned with the relations between inputs and outputs and the relative productivity across 
the concerned dimension, so higher-than-average level values should still allow for valid 
inference.

4  Data analysis

Typically, in SFA, output is modeled as the dependent variable in an econometric, regres-
sion-based model where inputs serve as the independent variables and the error term is 
decomposed into two components, a zero-mean error term typical of what is expected in 
regression techniques and a term representing inefficiency. In other words, SFA estimates 
a frontier model, where essentially the output produced is regressed against the inputs 
used in the production process. SFA is intuitive because to produce output, organizations 
consume inputs and what remains indicates how well organizations use inputs to produce 
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outputs. The standard model takes the natural log of each input and output in accordance 
with the Cobb–Douglas production function:

where y denotes output and Β’x + v represents the “stochastic frontier.” x represents a vec-
tor of inputs, where v ~ N (0, σ). Inefficiency is represented by µ, an estimation formed from 
decomposed residuals typically skewed leftward (negatively), the extent to which organiza-
tions’ observed output y deviates from the “maximum output” denoted by the stochastic 
frontier. Unlike most parametric estimation techniques, the primary objective in SFA is 
not the parameters’ effect size and significance, which would denote the degree to which 
inputs produce output. Rather, the objective is to measure productivity using the error 

(1)

Table 2  SFA scores ID Licenses Patents Revenue Start-ups

10,151 0.727 0.246 0.022 0.214
22,480 0.843 0.430 0.651 0.864
23,402 0.363 0.378 0.488 0.711
8060 0.233 0.259 0.003 0.583
10,075 0.234 0.236 0.003 0.422
10,161 0.526 0.320 0.006 0.783
11,479 0.325 0.374 0.033 0.765
10,171 0.241 0.260 0.038 0.356
22,165 0.434 0.378 0.031 0.793
10,181 0.349 0.297 0.044 0.470
45,700 0.745 0.402 0.058 0.875
87,501 0.904 0.692 0.072 0.884

Table 3  Correlation of 
productivity scores

Licenses Patents Revenue Start-ups

Licenses 1
Patents 0.623 1
Revenue 0.285 0.338 1
Start-Ups 0.385 0.768 0.316 1
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terms (Ruggiero, 1996; Siegel et al., 2003). SFA occurs in two step. The stochastic frontier 
(Β’x + v, that is, output level explained by input amounts) is first estimated. Then the ineffi-
ciency of each organization (µ) is estimated using the deviation from the estimated Β’x + v 
by taking the exponent of the residual since the entireH equation is in natural logs.

Data envelopment analysis (DEA) is also a commonly used tool to measure perfor-
mance, particularly when there are multiple outputs at stake. In some cases, DEA and 
SFA performance constructs triangulate similarly (Coupet & Berrett, 2019), yet significant 
differences can still exist between DEA and SFA performance constructs (Chapple et al., 
2005). DEA is a non-parametric mathematical linear program that computes performance 
scores by optimizing the sum of weighted ratios composed of the multiple inputs and out-
puts of a production function. It can work well as a benchmarking approach when there are 
many different inputs and outputs since it reports one score based on the multiple perfor-
mance ratios (Barnum et al., 2017) and is most useful when researchers seek to amalgam-
ate many different inputs and outputs into one performance score for comparison. How-
ever, given that our interest is, in part, in the variance in performance between different 
activities, we follow the approach of Siegel et al. (2003) and proceed with SFA.

Our data include multiple years of revenue and performance data. We use the approach 
of George Edward Battese and Coelli (1995) to model the panel. Time poses a difficult 
question in technology transfer performance models, as it can be difficult to predict if 
increases in inputs, on average, increase entrepreneurial activity, making appropriate lags 
difficult to specify (Kim & Daim, 2014). Moreover, it is unlikely that these las are constant 
across universities or individual research projects. Thus, we estimate our models with a 
time-invariant specification on efficiency such that efficiency is constant across time and 
productivity serves as a fixed effect (George E Battese & Coelli, 1992; López-Bermúdez 
et al., 2019).

We structure our analysis to estimate a general production function of the form in Eq. 2. 
Following previous research (Siegel et al., 2003), we consider three key activities in three 
different models: (1) Patents, the number of patents filed disclosed by the TTO office; (2) 
Active Licenses, the number of active licenses owned by a university; (3) Revenue, the 
amount of revenue generated by the university portfolio of licenses; and (4) Startups, the 
number of startups generated in an single year.

Our key production function inputs also closely follow Siegel et  al. (2003). The Staff 
measure is composed of the FTE number of staff in the university TTO office. NIH Fund-
ing, NIH Funding, and USDA Funding represents the total amount of expenditures sourced 
in each respective federal agency made by the university. We derive the measures by 
aggregating individual-level award expenditures in the UMETRICS database at the institu-
tional level, and we derive Industry Funding from the AUTM measure denoting the dollar 
amount of funding received by from industry. Essentially, our Staff measure serves as a 
proxy for labor, and our external funding (NIH, NSF, USDA, Industry) categories measures 
of capital. Z represents time-invariant, unobservable organizational-level controls such as 
the culture and legal environment each institution faces.

We begin with the assumption that activity would be driven by the total number of TTO 
staff; the amounts of NIH, NSF, USDA, and industry funding; and a set of time-invari-
ant organization-level controls. This assumption should hold before a production function 
is estimated with SFA. Essentially, increases in each factor of production should lead to 
increases in technology transfer activity. To test this assumption, we run a series of models 

(2)
Outputs = F(Staff ,NIH Funding,NSF Funding,USDAFunding, Industry Funding, Z)
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looking to ensure that, empirically, the relevant inputs are positively correlated with out-
puts. We want to ensure that the different funding streams universities receive, on average, 
lead to increased activity. We estimate linear feasible generalized least squares models, 
with university-level fixed effects, with university research outputs on the left-hand side 
as dependent variables and external funding (NSF Funding, NIH Funding, USDA Funding, 
Industry Funding) and the size of TTO offices.

We run these models separately using the following equation (Eq. 3):

where ln(Technnology TransferOutput)ij is the natural logarithm of Universityi ’s technology 
transfer output (i.e., licenses, patents, revenue, and start-ups) in year j; ��(Staff )ij is the nat-
ural logarithm of its number of staff; and ��(NSF)ij , ln(Industry)ij , ��(NIH)ij , and ln(USDA)ij 
represent the funding from the NSF, industry, the NIH, and the USDA, respectively. Firm 
inefficiency is captured by uij , and vij is the disturbance term.

Surprisingly, we find that, on average, increasing NIH funding and USDA funding are 
not associated with increases with disclosure, licensing, and revenue-generating activ-
ity. We find that NSF funding, industry research funding, and TTO office size are posi-
tively associated with licensing and revenue-generating activity. As a result, we drop 
both NIH and USDA funding as inputs for technology transfer activity. We then esti-
mate three SFA models using Eq. 4, one for each measure of technology transfer activ-
ity. Following Siegel et al. (2003), we estimate a three-factor log linear Cobb–Douglas 
production function. Since the structure of our data is a panel, we estimate a stochastic 
model with organizational fixed effects. The fixed effects are then used to construct a 
measure of efficiency:

where � ∼ i.i.d.N(�, �2
�
) , 𝜇 > 0 , and v ∼ i.i.d.N(0, �2

v
) . The rest of the information remains 

the same as in Eq. 3. � is a half-normal constant representing productivity, and its half-nor-
mality implies that each university is either on the frontier or below it. In SFA, the standard 
assumption is that v is an i.i.d error term.

The results of our SFA highlight two important findings. The first comes from the 
production function underlying our SFA. NSF funds are more closely associated with 
licenses, patent generation, and start-up formation than industry funding. Conversely, 
industry funding is slightly more associated with license-generated revenue.

Second, the universities that are best at generating entrepreneurial activity with 
external resources are not necessarily the best at generating revenue from it. In our 
four production functions, we assess the productivity in pursuit of four outcomes: 
licensing, patent activity, start-ups formed, and revenue generated. The productivity 
scores for licensing (Model 1) and patents (Model 2) are correlated. Model 3 estimates 
a productivity score regarding the revenue generated from licensing revenues, and the 
scores are meaningfully correlated neither with the scores from Models 1 or 2. Model 
4 examines start-up generation performance, which we find correlates with patent per-
formance but neither are associated with licensing or revenue performance.

(3)

ln (Technnology TransferOutput)ij =�ij + �1 ln (Staff )ij + �2 ln (NSF)ij + �3 ln (Industry)ij

+ �4 ln (NIH)ij + �5 ln (USDA)ij + Uij + vij,

(4)
ln(Technnology Transfer Output)ij = �1 ln (Staff )ij + �2 ln (NSF)ij + �3ln(Industry)ij + uij + vij,
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5  Findings and implications

Policy makers, including the congressional bodies that fund research agencies such as 
the NSF, have long been trying to link NSF funding to social outcomes. Benchmarking 
success(es) with extramural funding streams, particularly those from federal agencies like 
the NSF and NIH, is critical to the continued advancement of the US public research insti-
tutional design. Federal funding to university research enterprises has fluctuated in past 
decades (Mervis, 2006), and while there is empirical evidence of its potential transfor-
mational impact (Arora & Gambardella, 2005; Jacob & Lefgren, 2011), some Congress 
members have gone as far as to label federal research funding as wasteful (Mervis, 2014). 
Some of the pressure to reduce federal funding seems to be political in nature as opposed 
to related to scientific productivity (Mervis, 2013). Such fluctuations may persist, and it 
is important for universities to maximize productivity with federal funding. Thus, as the 
research offices that often coordinate technology transfer enterprises look to improve per-
formance and productivity with extramural funding, learning from the practices, capabili-
ties, and strategic advantages of their peers can be key to managing performance and chart-
ing strategic directions.

The structure of our data and the nature of technology production functions make causal 
approaches difficult, but our findings join a growing chorus of research and data science 
initiatives suggesting public research funding is a critical driver for research production. 
Research in the technology transfer domains focuses heavily on industry partnerships and 
industry funding, and while our findings suggest that industry funding matters, they also 
underscore the role of NSF funding.

Relative to NSF funding, NIH and USDA funding does not seem to play a major role 
in technology transfer production for the universities in our sample. These funding streams 
are critical to both universities and the communities they serve for many other reasons, 
such as public health and medical advances as well as agricultural development. Com-
mercialization with NIH and USDA funding may take a backseat to educational, public, 
and community goals. Our findings do not suggest that these two funding streams “matter” 
any more or less than NSF funding. We interpret this as evidence that universities looking 
to cultivate entrepreneurial productivity might find, on average, a particularly productive 
resource in the form of NSF funding. This is a potentially important finding since questions 
about the productivity of NSF funding has been part of public discourse for some time 
(Mervis, 2013). While NSF, NIH, and USDA funding are likely important for other social 
goals, our findings serve as preliminary evidence that NSF funding can help universities 
both commercialize research and generate revenue.

Moreover, NSF funding seems to be more closely associated with patent, licensing, and 
start-up activity than industry funding. While the difficulty and variance in production lags 
makes causal inference difficulty in estimating these production functions, the fixed effects 
models used in this study controls for time-invariant organizational variables, and our find-
ings at least suggest that NSF funding is as productive at industry funding in facilitating 
research commercialization patent, licensing, and start-up outcomes. It also appears to be 
nearly as important to revenue generation as industry funding. Universities pursue industry 
partnerships to build revenue streams (Berbegal-Mirabent et  al., 2015), but these results 
suggest that NSF funding might help facilitate revenue generation from commercialization 
activity as much as external industry funding.

Our findings suggest that universities looking to benchmark their own performance 
should find peers and generally benchmark in each of the relevant domains. After the 
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Bayh-Dole Act, university strategic orientation and process optimization has been mostly 
focused on licensing and patents. Generating revenue seems to be a different beast, and 
start-ups are a frontier in the sense that many university systems and TTOs are still devel-
oping strategies for success (Crișan et al., 2019). In our sample, performance in the tra-
ditional areas (licensing and patents) is only weakly correlated to revenue and start-up 
performance. TTO enterprises and university strategic initiatives should perhaps identify 
aspirational peers in each domain. No university in our model scored as a top performer in 
each model. Rather, universities were strong in some and relatively weak in others.

Universities looking to peers for organizational learning should perhaps seek out peers 
in the different strategic groups that make up the multiple missions. Universities manage 
or partner with TTOs to commercialize research, and while it is well known that this goal 
should be balanced with educational, public, and community goals, researchers should 
consider that the different goals within research commercialization itself might require dif-
ferent strategic organizations. In short, universities produce and manage many outputs and 
strategic goals with external funding, and the peers from which they might garner best 
practices might be different based on those different goals.

While our study is not the first to use the emerging UMTERICS data initiative (Allen 
et  al.2015; Buffington et  al., 2016), future research in technology transfer performance 
may leverage the data as they grow. Future research might use productivity measures, such 
as these and those produced by other benchmarking techniques, to investigate what best 
practices and strategic factors lead to strategic advantage in leveraging external funding 
for research. Research funding does more than produce market-oriented outcomes, and 
the social and public value created by academic innovation is an increasingly important 
consideration (Bozeman et al., 2015). We do not consider all of the wide array of social 
outcomes here, but with the growth of data partnerships such as IRIS, valid constructs of 
social value may be become more widely available. Techniques such as SFA can be used to 
benchmark them as well.

As Bozeman et al. (2015) additionally note, our activity-oriented model says little about 
downstream outcomes and overall impact of investment in R&D. We only benchmark the 
degree to which universities can transform external funding into quantifiable activity-based 
outputs. Our model is university centric, and we do not spotlight the impact these tech-
nologies have on communities. We do leverage the UMETRICS data in this study, which 
have promising potential to study downstream effects and impact R&D funding. Buffing-
ton et al. (2016), for instance, use UMETRICS data to link STEM training to early career 
outcomes for male and female students. We bind this study to a benchmarking study for 
universities, but the UMETRICS data might have important implications for downstream 
effects of R&D funding.

Our use of both the AUTM and UMETRICS data introduced some limitations into the 
study. First, our sample size is a snapshot of the TTOs and university entrepreneurship 
offices remitting data to both AUTM and UMETRICS. The UMETRICs is still emerging, 
so we were constrained in this regard. Still, the UMETRICS initiative is growing, and we 
encourage scholars interested in extending the generalizability of this study to consider the 
UMETRICS data’s capabilities as the initiative grows. Additionally, our data use agree-
ment restricted use of the data to portions that would not compromise the anonymity of 
institutions remitting data to UMETRICS. Thus, certain institutional characteristics that 
would, when combined with portions of the data necessary to estimate a production func-
tion, compromise this anonymity were not available to us.

These include data on the presence of a medical school. There is limited evidence that 
having a medical school is related to tech transfer performance (Heisey & Adelman, 2011; 
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Siegel et al., 2003), but it is possible that TTOs also supporting medical schools have pro-
duction functions with different structures. In our study, this might most manifest in our 
finding that NIH funding does not a seem to be a major driver of productivity. A disag-
gregated production function of TTOs at universities with medical schools might produce 
a different result. Related to this, SFA also assumes that every decision-making unit (uni-
versity TTOs) have a shared production function. Further, our particular model assumes 
constant efficiency over the data periods (Belotti et al., 2015). Future models using a larger 
dataset might allow for future research investigating changes in productivity with external 
funding over time (Greene, 2005; Kumbhakar & Lovell, 2003).

6  Conclusions

In this study, we benchmark university performance with external funding across four main 
areas of technology transfer productivity: licensing, patents, start-ups, and revenue gener-
ated. Using SFA, we estimate performance measures across these main areas and find that 
the link between NSF funding and technology transfer performance are at least as strong 
as the link to industry funding and Tech Transfer performance. Comparing performance 
across these domains, we also find that universities that perform well in one domain are 
typically at best weakly linked to others, particularly regarding start-ups in revenue. Simply 
put, high performance in licensing and patent domains does not necessarily imply high per-
formance in generating revenue or launching start-ups.
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